Modulation of gastric emptying and gastrointestinal transit in rats through intestinal cannabinoid CB(1) receptors

Eur J Pharmacol. 2002 Aug 16;450(1):77-83. doi: 10.1016/s0014-2999(02)02053-8.

Abstract

We studied the delay in gastric emptying and gastrointestinal transit induced by the cannabinoid receptor agonists (+)-WIN 55,212-2 (R(+)-[2,3-dihydro-5-methyl-3-[(4-morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazin-yl]-(1-naphthalenyl)methanone mesylate) and CP 55,940 ((-)-cis-3[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl) cyclohexanol), as prevented by the selective cannabinoid CB(1)-receptor antagonist SR141716 ((N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methylpyrazole-3-carboxamide)) in rats after systemic or central drug administration. Oral SR141716 showed comparable potency (ID(50) range 1.0-3.9 mg/kg) in antagonizing gastric emptying and gastrointestinal transit delay by (+)-WIN 55,212-2 or CP 55,940. Gastric emptying and gastrointestinal transit delay after intracerebroventricular (i.c.v.) (+)-WIN 55,212-2 was prevented by oral or i.c.v. SR141716, but i.c.v. SR141716 did not significantly reduce the effect of i.p. (+)-WIN 55,212-2. Pertussis toxin prevented the delaying action of i.c.v. (+)-WIN 55,212-2 on both gastric emptying and gastrointestinal transit, but had no effect on (+)-WIN 55,212-2 i.p. These findings are consistent with a primary role of peripheral cannabinoid CB(1) receptor mechanisms in gastrointestinal transit delay by specific agonists.

Publication types

  • Comparative Study

MeSH terms

  • Administration, Oral
  • Analysis of Variance
  • Animals
  • Benzoxazines
  • Cannabinoids / metabolism*
  • Cyclohexanols / administration & dosage
  • Cyclohexanols / pharmacology*
  • Dose-Response Relationship, Drug
  • Gastric Emptying / drug effects*
  • Gastrointestinal Transit / drug effects*
  • Injections, Intraventricular
  • Male
  • Morpholines / administration & dosage
  • Morpholines / pharmacology*
  • Naphthalenes / administration & dosage
  • Naphthalenes / pharmacology*
  • Piperidines / pharmacology
  • Pyrazoles / pharmacology
  • Rats
  • Receptors, Cannabinoid
  • Receptors, Drug / antagonists & inhibitors*
  • Receptors, Drug / physiology
  • Rimonabant

Substances

  • Benzoxazines
  • Cannabinoids
  • Cyclohexanols
  • Morpholines
  • Naphthalenes
  • Piperidines
  • Pyrazoles
  • Receptors, Cannabinoid
  • Receptors, Drug
  • (3R)-((2,3-dihydro-5-methyl-3-((4-morpholinyl)methyl)pyrrolo-(1,2,3-de)-1,4-benzoxazin-6-yl)(1-naphthalenyl))methanone
  • 3-(2-hydroxy-4-(1,1-dimethylheptyl)phenyl)-4-(3-hydroxypropyl)cyclohexanol
  • Rimonabant