We have previously demonstrated that interleukin (IL)-10-deficient (IL-10 knockout [KO]) but not wild-type (WT) mice develop colitis after infection with Helicobacter hepaticus. Here, we show that infected recombination activating gene (RAG) KO mice develop intestinal inflammation after reconstitution with CD4(+) T cells from IL-10 KO animals and that the cotransfer of CD4(+) T cells from H. hepaticus-infected but not uninfected WT mice prevents this colitis. The disease-protective WT CD4(+) cells are contained within the CD45RB(low) fraction and unexpectedly were found in both the CD25(+) and the CD25(-) subpopulations of these cells, their frequency being higher in the latter. The mechanism by which CD25(+) and CD25(-) CD45RB(low) CD4(+) cells block colitis involves IL-10 and not transforming growth factor (TGF)-beta, as treatment with anti-IL-10R but not anti-TGF-beta monoclonal antibody abrogated their protective effect. In vitro, CD45RB(low) CD4(+) cells from infected WT mice were shown to produce IL-10 and suppress interferon-gamma production by IL-10 KO CD4(+) cells in an H. hepaticus antigen-specific manner. Together, our data support the concept that H. hepaticus infection results in the induction in WT mice of regulatory T cells that prevent bacteria-induced colitis. The induction of such cells in response to gut flora may be a mechanism protecting normal individuals against inflammatory bowel disease.