Objective: To determine the sites of cleavage and denaturation of type II collagen (CII) by collagenase(s) in healthy and osteoarthritic (OA) human articular cartilage and their relationship to the distribution of matrix metalloproteinase 1 (MMP-1) and MMP-13.
Methods: Single (per subject) full-depth specimens from femoral condylar cartilage were isolated from articulating surfaces at autopsy from 8 subjects without arthritis and during arthroplasty from 10 patients with OA. Fixed frozen sections of cartilage were examined by immunoperoxidase localization, using antibodies to the collagenase-generated cleavage site in CII, to an intrachain epitope recognized only in denatured CII, and to MMP-1 and MMP-13 (proenzyme, activated enzyme, or enzyme/inhibitor complex).
Results: Staining for collagen cleavage, denaturation, and both MMPs was weak to moderate and was frequently observed in pericellular sites in cartilage from younger, nonarthritic subjects. In specimens from older subjects, this staining was often more widespread and of greater intensity. Similar staining was usually, but not always, seen for all antibodies. In OA cartilage, staining was often stronger and more intense than that in normal cartilage from older subjects, and the distribution of staining was often similar for the different antibodies. Pericellular staining in the deep zone was frequently more pronounced in arthritic cartilage and extended to territorial and sometimes interterritorial sites. In very degenerate specimens, staining was distributed throughout most of the cartilage matrix.
Conclusion: These observations provide evidence for the presence of limited cleavage and denaturation of CII restricted to mainly pericellular and superficial sites in cartilage from younger, healthy subjects, where MMP-1 and MMP-13 are also selectively localized. Collagen degradation is more extensive and often more pronounced in cartilage from older, nonarthritic subjects. Characteristic changes in early OA are similar to those seen with aging in cartilage from older, healthy subjects, with collagen damage and collagenases concentrated closer to the articular surface. There was usually a close correspondence between the cleavage and denaturation of CII and the sites at which these collagenases were detected, suggesting that both MMPs are involved in the physiology and pathology. There was no evidence that the damage to CII is ordinarily initiated in sites other than at and near the articular surface and around chondrocytes.