Direct ab initio dynamics study on the rate constants and kinetic isotope effect for the reactions of H atoms with GeDn(CH3)4-n (n = 1-4)

J Comput Chem. 2002 Nov 15;23(14):1366-74. doi: 10.1002/jcc.10137.

Abstract

Direct ab initio dynamic calculations are performed on the reactions of atomic hydrogen with GeD(n)(CH(3))(4-n) (n = 1-4) over the temperature range 200-2000 K at the PMP4SDTQ/6-311 +G(3df,2p)//MP2/6-31 +G(d) (for n = 2-4) and G2//MP2/6-31 +G(d) (for n = 1) levels. The corresponding k(H)/k(D) ratios are then calculated in order to determine the kinetic isotope effect for the four reactions. For the simplest GeD(4) +H reaction, the only one that has available experimental data, the calculated canonical variational transition state theory incorporates small-curvature tunneling correction (CVT/SCT) thermal rate constants, and the k(H)/k(D) values are in good agreement with the experimental values within the experimental temperature range 293-550 K. For the four GeD(n)(CH(3))(4-4) (n = 1-4) reactions, the variational effect is small over the whole temperature range, whereas the small-curvature effect is important in the lower temperature range. Finally, the overall rate constants are fitted to the three-parameter expression over the whole temperature range 200-2000 K as 5.8 x 10(8)T(1.68)exp(-929/T), 1.7 x 10(8)T(1.80)exp(-691/T), 2.58 x 10(8)T(1.71)exp(-706/T), and 1.0 x 10(7)T(2.08)exp(-544/T) cm(3) mol(-1) s(-1) for the n = 4, 3, 2, and 1 reactions. Our work may represent the first theoretical study of the kinetic isotope effect for the H-attack on the G-H bonding.