The defining characteristic of recessive diseases is the absence of a phenotype in the heterozygous carriers. Nonetheless, subtle manifestations may be detectable by new methods, such as expression profiling. Ataxia telangiectasia (AT) is a typical recessive disease, and individual carriers cannot be reliably identified. As a group, however, carriers of an AT disease allele have been reported to have a phenotype that distinguishes them from normal control individuals: increased radiosensitivity and risk of cancer. We show here that the phenotype is also detectable, in lymphoblastoid cells from AT carriers, as changes in expression level of many genes. The differences are manifested both in baseline expression levels and in response to ionizing radiation. Our findings show that carriers of a recessive disease may have an "expression phenotype." In the particular case of AT, this suggests a new approach to the identification of carriers and enhances understanding of their increased cancer risk. More generally, we demonstrate that genomic technologies offer the opportunity to identify and study unaffected carriers, who are hundreds of times more common than affected patients.