Nonself recognition during vegetative growth in filamentous fungi is mediated by heterokaryon incompatibility (het) loci. In Neurospora crassa, het-c is one of 11 het loci. Three allelic specificity groups, termed het-c(OR), het-c(PA) and het-c(GR), exist in natural populations. Heterokaryons or partial diploids that contain het-c alleles of alternative specificity show severe growth inhibition, repression of conidiation and hyphal compartmentation and death (HCD). Using epitope-tagged HET-C, we show that nonself recognition is mediated by the presence of a heterocomplex composed of polypeptides encoded by het-c alleles of alternative specificity. The HET-C heterocomplex localized to the plasma membrane (PM); PM-bound HET-C heterocomplexes occurred in all three het-c incompatible allelic interactions. Strains containing het-c constructs deleted for a predicted signal peptide sequence formed HET-C heterocomplexes in the cytoplasm and showed a growth arrest phenotype. Our finding is a step towards understanding nonself recognition mechanisms that operate during vegetative growth in filamentous fungi, and provides a model for investigating relationships between recognition mechanisms and cell death.