Boneless top loin subprimals (n = 320) from Slight and Small marbled carcasses were fabricated into 2.54-cm thick steaks to determine core location effects on tenderness. In Exp. 1, top loins were aged to 7 d before steaks were cut and cooked to an internal temperature of 71 degrees C. After cooking, a maximum of 15 1.27-cm diameter cores were removed and sheared with a Warner-Bratzler shear force (WBSF) device. There was not a marbling score x core location interaction (P = 0.36). However, there was a main effect of core location (P < 0.01). Cores from the medial, middle, and lateral portion of the longissimus muscle (LM) aged for 7 d differed, with less resistance (P < 0.05) in the medial than the lateral end. Also, there was an effect of marbling score on WBSF, with Small-marbled steaks having lower (P < 0.02) WBSF values than Slight-marbled steaks. In a second experiment, steaks were removed from the middle of the top loin subprimals and aged an additional 7 d to produce 14-d aged steaks. Shear values decreased (P < 0.05) from Exp. 1 to 2 for all core locations. Neither the main effect of marbling score nor the core location x marbling score interaction was significant (P > 0.40); however, the same lateral to medial gradient in WBSF values was discovered again in Exp. 2. Both experiments indicated there were regions of WBSF values that differed (P < 0.05) across the cross section of the LM producing a shear-force/tenderness gradient, with the most medial cores having the lowest WBSF values in both experiments independent of marbling score. Regression analyses indicated the middle and center portions of LM steaks tended to have the most predictive capacity of average WBSF. Because of the variability in tenderness caused by location within the LM, care should be exercised when selecting sampling areas for the measurements of tenderness using the WBSF measure.