Inositol 1,4,5-trisphosphate receptor function in human oocytes: calcium responses and oocyte activation-related phenomena induced by photolytic release of InsP(3) are blocked by a specific antibody to the type I receptor

Mol Hum Reprod. 2002 Oct;8(10):912-8. doi: 10.1093/molehr/8.10.912.

Abstract

Type I inositol 1,4,5-trisphosphate-sensitive receptors (InsP(3)R) are expressed in human oocytes and may be involved in operating the Ca(2+) release triggered by the fertilizing sperm. This study examines the contribution of type I InsP(3)R in operating Ca(2+) release in human oocytes secondary to InsP(3) itself, using a specific function-blocking antibody in conjunction with photolytic release of microinjected InsP(3). Intracellular Ca(2+) responses were assessed in oocytes microinjected with only caged InsP(3) in experiment set A, while in experiment sets B and C, sibling oocytes were injected with caged InsP(3) and the blocking antibody or a corresponding volume of medium, prior to flash photolysis. In experiment set C, certain fertilization-related phenomena (cortical granule exocytosis and chromatin configurations) were assessed using optical sections and three-dimensional image reconstructions obtained from a confocal laser scanning microscope. In experiment set A, photolytic release of InsP(3) triggered a Ca(2+) response (increase from approximately 100 to 220 nmol/l followed by an exponential recovery, n = 8) and a wave in the oocytes that spread from the stimulation point to the opposite pole. In set B, photolytic InsP(3) release generated Ca(2+) responses in control oocytes (n = 9), but not in the antibody-injected oocytes (n = 7). In set C, cortical granule exocytosis and anaphase chromosome configurations were noted in the control oocytes after flash photolysis (n = 6). These changes were completely absent in antibody injected oocytes as their cortical granules were intact and the chromosomes were in metaphase. These oocytes had also lacked Ca(2+) responses as in set B (n = 5). This study demonstrates the functional presence of type I InsP(3)R-operated Ca(2+) channels in human oocytes and further suggests an active role of InsP(3) in triggering the Ca(2+) rise and secondary activation phenomena at fertilization.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antibodies, Monoclonal / pharmacology
  • Calcium / metabolism*
  • Calcium Channels / immunology
  • Calcium Channels / metabolism*
  • Cells, Cultured
  • Chromatin / ultrastructure
  • Female
  • Humans
  • Inositol 1,4,5-Trisphosphate / metabolism*
  • Inositol 1,4,5-Trisphosphate Receptors
  • Microinjections
  • Oocytes / drug effects
  • Oocytes / physiology*
  • Oocytes / ultrastructure
  • Photochemistry / methods
  • Receptors, Cytoplasmic and Nuclear / immunology
  • Receptors, Cytoplasmic and Nuclear / metabolism*

Substances

  • Antibodies, Monoclonal
  • Calcium Channels
  • Chromatin
  • ITPR1 protein, human
  • Inositol 1,4,5-Trisphosphate Receptors
  • Receptors, Cytoplasmic and Nuclear
  • Inositol 1,4,5-Trisphosphate
  • Calcium