Measurement of body surface energy leakage of defibrillation shock by an implantable cardioverter defibrillator

Pacing Clin Electrophysiol. 2002 Aug;25(8):1212-8. doi: 10.1046/j.1460-9592.2002.01212.x.

Abstract

Leakage of electrical current from the body surface during a defibrillation shock delivery by an ICD device was evaluated in 27 patients with life-threatening ventricular tachyarrhythmias. All patients underwent the implantation of the Medtronic Jewel Plus ICD system, and the defibrillation shocks were delivered between the active can implanted in the left subclavicular region and the endocardial lead placed in the right ventricle. At the time of measurement of the effect of electrical energy delivery for defibrillation, the shocks were delivered in a biphasic form at the energy level of 20 or 30 J. During each delivery of the defibrillation shock, the electrical current to the body surface was measured through large skin electrodes (6.2 cm2) that were pasted at the following positions: (1) parallel position: the electrodes were placed at the left shoulder and the right low-chest, and the direction of the electrode vector was parallel to the direction of the defibrillation energy flow, and (2) cross position: the electrodes were placed at the right shoulder and the left low-chest, and the vector of the electrodes was roughly perpendicular to the direction of the energy flow. The energy leakages were measured in 80 defibrillation shocks. The peak leakage current during the shock delivery at energy of 30 J was 48 +/- 26 mA at the parallel position and 19 +/- 15 mA at the cross position (P = 0.0002). The energy leakage at a 30-J shock was 7.4 +/- 7.2 mJ at the parallel position and 1.4 +/- 2.3 mJ at the cross position (P = 0.0002). The actual maximum energy leakage was 105 mA, 29 mJ, and 106 V that appeared at the parallel position. The body surface leakage of the defibrillation energy of the ICD device was evaluated. The power of the energy leakage strongly depended on the angle between the alignment of the recording electrodes and the direction of the energy flow. The highest current leakage to the body surface reached a considerable level, but the energy leakage was small because of the short duration of the defibrillation shock.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Defibrillators, Implantable*
  • Electric Impedance
  • Electricity*
  • Female
  • Humans
  • Male
  • Middle Aged
  • Tachycardia, Ventricular / therapy