We recorded elevated numbers of circulating myeloid and erythroid colony-forming cells in 15 adult patients with acute myeloid leukaemia (AML) who presented with high blood white cell counts. Since leukaemic blasts from three of these patients were Philadelphia chromosome-positive (Ph+), we were able to determine if blood progenitors from these particular patients arose from the leukaemic clone or from residual normal progenitors. Blasts and colonies were intensively investigated using a combination of cell surface marker analysis by flow cytometry, RT-PCR and interphase fluorescence in situ hybridization (FISH). FISH detected rearrangements within the major breakpoint BCR (M-BCR) region in blasts and in some myeloid and erythroid colonies from patients 1 and 2. The minor breakpoint (m-BCR) region was detected in blasts and in some myeloid and erythroid colonies from patient 3. RT-PCR detected long b2a2 BCR-ABL transcripts in blasts from patients 1 and 2, although misspliced short e1a2 transcripts were also seen in patient 1. Only e1a2 transcripts were found in blasts from patient 3. Flow sorting demonstrated the B-cell marker CD19 on blasts and on a proportion of myeloid and erythroid progenitors from patients 1 and 3. RT-PCR also detected IgH rearrangements, further evidence of B-cell differentiation, in blasts from these two patients. We conclude that both normal and clonal circulating progenitor numbers can be raised in both M-BCR and m-BCR Ph+ AML. The underlying cause, perhaps efflux from a congested marrow, may be common to AML patients with a high blood white cell count.