The tsetse fly transmitted salivarian trypanosome, Trypanosoma congolense of the subgenus Nanomonas, is the most significant of the trypanosomes with respect to the pathology of livestock in sub-Saharan Africa. Unlike the related trypanosome Trypanosoma brucei of the subgenus Trypanozoon, the major surface molecules of the insect stages of T. congolense are poorly characterized. Here, we describe the purification and structural characterization of the glutamic acid and alanine-rich protein, one of the major surface glycoproteins of T. congolense procyclic and epimastigote forms. The glycoprotein is a glycosylphosphatidylinositol-anchored molecule with a galactosylated glycosylphosphatidylinositol anchor containing an sn-1-stearoyl-2-l-3-HPO(4)-1-(2-O-acyl)-d-myo-inositol phospholipid moiety. The 21.6-kDa polypeptide component carries two large mannose- and galactose-containing oligosaccharides linked to threonine residues via phosphodiester linkages. Mass spectrometric analyses of tryptic digests suggest that several or all of the closely related glutamic acid and alanine-rich protein genes are expressed simultaneously in a T. congolense population growing in vitro.