In this paper, we show that caveolin-1 is abundantly present in a cell line of immortalized gonadotropin-releasing hormone-expressing neurons (GN11). In contrast to GN11, caveolin is undetectable in a cognate cell line of immortalized gonadotropin-releasing hormone-secreting neurons (GT1-7). These two cell lines are characterized by a radically different sphingolipid metabolism. After incubation in the presence of tracer amount of [1-(3)H]sphingosine, GN11 and GT1-7 neurons incorporated similar amounts of radioactivity. In GT1-7 neurons, [1-(3)H]sphingosine metabolism was markedly oriented toward the biosynthesis of complex sphingolipids. In fact, almost all the radioactivity in the lipid extracts from GT1-7 cells was associated with biosynthetic products (ceramide, sphingomyelin, and glycosphingolipids). In particular glycosphingolipids represented more than 65% of total lipid radioactivity in these cells, and the main glycosphingolipid was GM3 ganglioside (about 47% of total lipid radioactivity). In the case of GN11 neurons, a high portion of [1-(3)H]sphingosine underwent complete degradation, as indicated by the formation of high levels of radioactive phosphatidylethanolamine (about 23% of lipid radioactivity). Moreover, the main complex sphingolipid in GN11 neurons was not a glycolipid, but sphingomyelin (its level in these cells, about 54% of lipid radioactivity, was two-fold higher than in GT1-7). Glycolipids, gangliosides in particular, were present in low amount (9.5% of lipid radioactivity) if compared with the cognate GT1-7 cell line, and GM3 was almost absent in GN11 neurons. Despite the radical differences in ganglioside and caveolin content, from both cell types a membrane fraction similarly enriched in sphingolipids was prepared. In the case of GN11 cells, this fraction was also enriched in caveolin. The presence of caveolin or GM3 may correlate with different functional properties linked to the stage of neuronal maturation, since GN11 and GT1-7 are representative, respectively, of immature, migrating, and differentiated, postmigratory gonadotropin-releasing hormone-positive neurons.