What's the relative risk? A method to directly estimate risk ratios in cohort studies of common outcomes

Ann Epidemiol. 2002 Oct;12(7):452-4. doi: 10.1016/s1047-2797(01)00278-2.

Abstract

Purpose: In cohort studies of common outcomes, odds ratios (ORs) may seriously overestimate the true effect of an exposure on the outcome of interest (as measured by the risk ratio [RR]). Since few study designs require ORs (most frequently, case-control studies), their popularity is due to the widespread use of logistic regression. Because ORs are used to approximate RRs so frequently, methods have been published in the general medical literature describing how to convert ORs to RRs; however, these methods may produce inaccurate confidence intervals (CIs). The authors explore the use of binomial regression as an alternative technique to directly estimate RRs and associated CIs in cohort studies of common outcomes.

Methods: Using actual study data, the authors describe how to perform binomial regression using the SAS System for Windows, a statistical analysis program widely used by US health researchers.

Results: In a sample data set, the OR for the exposure of interest overestimated the RR more than twofold. The 95% CIs for the OR and converted RR were wider than for the directly estimated RR.

Conclusions: The authors argue that for cohort studies, the use of logistic regression should be sharply curtailed, and that instead, binomial regression be used to directly estimate RRs and associated CIs.

MeSH terms

  • Cohort Studies
  • Data Interpretation, Statistical*
  • Humans
  • Male
  • Odds Ratio
  • Outcome Assessment, Health Care / methods*
  • Risk
  • Software
  • United States