Chronic myelomonocytic leukemia requires granulocyte-macrophage colony-stimulating factor for growth in vitro and in vivo

Exp Hematol. 2002 Oct;30(10):1124-31. doi: 10.1016/s0301-472x(02)00903-7.

Abstract

Objective: Chronic myelomonocytic leukemia (CMML) is a heterogeneous disease with no effective treatments or cure. Several factors have been implicated in its pathogenesis. In the current study, we studied the dependence of CMML on granulocyte-macrophage colony-stimulating factor (GM-CSF).

Materials and methods: We used in vitro colony assays in methylcellulose where CMML cells were tested in the presence or absence of the specific GM-CSF antagonist E21R. We also developed an in vivo model in which CMML cells were tested for their ability to engraft into immunodeficient mice transgenic for human GM-CSF.

Results: Bone marrow cells from seven of seven patients with CMML formed spontaneous colonies that were sensitive to E21R treatment, with reduction in colony growth by up to 92%. E21R also inhibited colony formation by CMML patient cells stimulated by exogenously added GM-CSF but not interleukin-3. In in vivo experiments we observed engraftment of CMML cells (but not normal cells) in immunodeficient mice transgenic for human GM-CSF. None engrafted in nontransgenic mice. Cell dose escalation showed that the optimal number was 0.5 to 1 x 10(8) peripheral blood mononuclear cells per mouse, which is equivalent to an infusion of 0.2 to 3.6 x 10(6) CD34(+) cells. Time course experiments showed that maximal engraftment occurred 6 weeks after injection.

Conclusions: These results demonstrate that in some CMML patients, GM-CSF produced by either autocrine or paracrine mechanisms is a major growth determinant. The results suggest that therapies directed at blocking this cytokine could control the growth of some CMML patients in vivo.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Animals
  • Blast Crisis / pathology
  • Cell Division / drug effects
  • DNA Primers
  • Female
  • Granulocyte-Macrophage Colony-Stimulating Factor / deficiency
  • Granulocyte-Macrophage Colony-Stimulating Factor / genetics
  • Granulocyte-Macrophage Colony-Stimulating Factor / pharmacology*
  • Humans
  • Leukemia, Myelomonocytic, Chronic / pathology*
  • Male
  • Mice
  • Mice, Inbred NOD
  • Mice, SCID
  • Mice, Transgenic
  • Transplantation, Heterologous
  • Tumor Cells, Cultured

Substances

  • DNA Primers
  • Granulocyte-Macrophage Colony-Stimulating Factor