The development of a subgenomic replicon derived from the hepatitis C virus (HCV) strain Con1 enabled the study of viral RNA replication in Huh-7 cells. The level of replication of replicons, as well as full-length Con1 genomes, increased significantly by a combination of two adaptive mutations in NS3 (E1202G and T1280I) and a single mutation in NS5A (S2197P). However, these cell culture-adaptive mutations influenced in vivo infectivity. After intrahepatic transfection of chimpanzees, the wild-type Con1 genome was infectious and produced viral titers similar to those produced by other infectious HCV clones. Repeated independent transfections with RNA transcripts of a Con1 genome containing the three adaptive mutations failed to achieve active HCV infection. Furthermore, although a chimpanzee transfected with RNA transcripts of a Con1 genome with only the NS5A mutation became infected, this mutation was detected only in virus genomes recovered from serum at day 4; viruses recovered at day 7 had a reversion back to the original Con1 sequence. Our study demonstrates that mutations that are adaptive for replication of HCV in cell culture may be highly attenuating in vivo.