Several allergenic proteins, such as the 1,3-beta-glucanases, have been associated with plant defence responses. Ole e 9 (46 kDa) is a 1,3-beta-glucanase and major allergen from olive pollen, which is a principal cause of allergy in Mediterranean countries. Its C-terminal segment (101 amino acid residues) has been produced as a recombinant polypeptide in the yeast Pichia pastoris. The cDNA encoding the polypeptide was inserted into the plasmid vector pPICZalpha-A and overexpressed in KM71 yeast cells. The recombinant product was purified by size-exclusion chromatography followed by reversed-phase HPLC. Edman degradation, MS and CD were used to determine molecular properties of the recombinant polypeptide, which exhibited 16% alpha-helix and 30% beta-sheet as regular elements of secondary structure. Disulphide bridges of the molecule were determined at positions Cys-14-Cys-76, Cys-33-Cys-94 and Cys-39-Cys-48. The high IgE-binding capability of the recombinant C-terminal segment of Ole e 9 against sera from Ole e 9-sensitive individuals, which was determined by immunoblotting and ELISA inhibition, supported the proper folding of the polypeptide and the maintenance of antigenic properties that it exhibits as a part of the whole allergen. These data indicated that this portion of Ole e 9 constitutes an independent domain, which could be used to study its three-dimensional structure and function, as well as for clinical purposes such as diagnosis and specific immunotherapy. Since it shows sequence similarity with portions of 1,3-beta-glucanases from plant tissues and the Gas/Phr/Epd protein families involved in yeast morphogenesis, we suggest that this domain could play an equivalent functional role within these enzymes.