Small interfering RNAs (siRNAs) were designed to target the bcr-abl oncogene, which causes chronic myeloid leukemia (CML) and bcr-abl-positive acute lymphoblastic leukemia (ALL). Chemically synthesized anti-bcr-abl siRNAs were selected using reporter gene constructs and were found to reduce bcr-abl mRNA up to 87% in bcr-abl-positive cell lines and in primary cells from CML patients. This mRNA reduction was specific for bcr-abl because c-abl and c-bcr mRNA levels remained unaffected. Furthermore, protein expression of BCR-ABL and of laminA/C was reduced by specific siRNAs up to 80% in bcr-abl-positive and normal CD34(+) cells, respectively. Finally, anti-bcr-abl siRNA inhibited BCR-ABL-dependent, but not cytokine-dependent, proliferation in a bcr-abl-positive cell line. These data demonstrate that siRNA can specifically and efficiently interfere with the expression of an oncogenic fusion gene in hematopoietic cells.