P-selectin binds to the N-terminal region of human P-selectin glycoprotein ligand-1 (PSGL-1). For optimal binding, this region requires sulfation on 3 tyrosines and specific core-2 O-glycosylation on a threonine. P-selectin is also thought to bind to the N terminus of murine PSGL-1, although it has a very different amino acid sequence than human PSGL-1. Murine PSGL-1 has potential sites for sulfation at Tyr13 and Tyr15 and for O-glycosylation at Thr14 and Thr17. We expressed murine PSGL-1 or constructs with substitutions of these residues in transfected Chinese hamster ovary cells that coexpressed the glycosyltransferases required for binding to P-selectin. The cells were assayed for binding to fluid-phase P-selectin and for tethering and rolling on P-selectin under flow. In both assays, substitution of Tyr13 or Thr17 markedly diminished, but did not eliminate, binding to P-selectin. In contrast, substitution of Tyr15 or Thr14 did not affect binding. Substitution of all 4 residues eliminated binding. Treatment of cells with chlorate, an inhibitor of sulfation, markedly reduced binding of wild-type PSGL-1 to P-selectin but did not further decrease binding of PSGL-1 with substitutions of both tyrosines. These data suggest that sulfation of Tyr13 and O-glycosylation of Thr17 are necessary for murine PSGL-1 to bind optimally to P-selectin. Because it uses only one tyrosine, murine PSGL-1 may rely more on other peptide components and O-glycosylation to bind to P-selectin than does human PSGL-1.