CpG methylation is mediated by the functions of at least three active DNA methyltransferases (DNMTs). While DNMT1 is thought to perform maintenance methylation, the more recently discovered DNMT3a and DNMT3b enzymes are thought to facilitate de novo methylation. Murine Dnmt3a and 3b are developmentally regulated and a new Dnmt3a isoform, Dnmt3a2, has been recently shown to be expressed preferentially in mouse embryonic stem (ES) cells. Here we have characterized four alternatively spliced variants of human and mouse DNMT3a. These transcripts included a novel exon 1 (1beta) that was spliced into the same exon 2 acceptor splice site used by the original exon 1 (1alpha). Cloning and sequencing of the 5' region of the human DNMT3a gene revealed that exon 1beta was situated upstream of exon 1alpha and that the entire region was contained within a CpG island. We also identified other alternatively spliced species containing intron 4 inclusions that were associated with either exon 1alpha or 1beta. These were expressed at low levels in mouse and human cells. All transcripts were highly conserved between human and mouse. The levels of Dnmt3a mRNA containing exon 1beta were 3-25-fold greater in mouse ES cells than in various somatic cells as determined by semiquantitative reverse transcription-polymerase chain reaction analysis, while the levels of exon 1alpha-containing transcripts were slightly higher in human and mouse somatic cells. The preferential expression of the beta transcript in ES cells suggests that this transcript, in addition to Dnmt3a2, may also be important for de novo methylation during development.