A robust method for extraction and automatic segmentation of brain images

Neuroimage. 2002 Nov;17(3):1087-100. doi: 10.1006/nimg.2002.1221.

Abstract

A new protocol is introduced for brain extraction and automatic tissue segmentation of MR images. For the brain extraction algorithm, proton density and T2-weighted images are used to generate a brain mask encompassing the full intracranial cavity. Segmentation of brain tissues into gray matter (GM), white matter (WM), and cerebral spinal fluid (CSF) is accomplished on a T1-weighted image after applying the brain mask. The fully automatic segmentation algorithm is histogram-based and uses the Expectation Maximization algorithm to model a four-Gaussian mixture for both global and local histograms. The means of the local Gaussians for GM, WM, and CSF are used to set local thresholds for tissue classification. Reproducibility of the extraction procedure was excellent, with average variation in intracranial capacity (TIC) of 0.13 and 0.66% TIC in 12 healthy normal and 33 Alzheimer brains, respectively. Repeatability of the segmentation algorithm, tested on healthy normal images, indicated scan-rescan differences in global tissue volumes of less than 0.30% TIC. Reproducibility at the regional level was established by comparing segmentation results within the 12 major Talairach subdivisions. Accuracy of the algorithm was tested on a digital brain phantom, and errors were less than 1% of the phantom volume. Maximal Type I and Type II classification errors were low, ranging between 2.2 and 4.3% of phantom volume. The algorithm was also insensitive to variation in parameter initialization values. The protocol is robust, fast, and its success in segmenting normal as well as diseased brains makes it an attractive clinical application.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Algorithms*
  • Alzheimer Disease / diagnosis*
  • Brain / pathology*
  • Humans
  • Image Processing, Computer-Assisted / methods*
  • Magnetic Resonance Imaging / methods*
  • Normal Distribution
  • Phantoms, Imaging
  • Reference Values