Glutamate has been implicated as an intracellular messenger in the regulation of insulin secretion in response to glucose. Here we demonstrate by measurements of cell capacitance in rat pancreatic beta-cells that glutamate (1 mM) enhanced Ca2+-dependent exocytosis. Glutamate (1 mM) also stimulated insulin secretion from permeabilized rat beta-cells. The effect was dose-dependent (half-maximum at 5.1 mM) and maximal at 10 mM glutamate. Glutamate-induced exocytosis was stronger in rat beta-cells and clonal INS-1E cells compared to beta-cells isolated from mice and in parental INS-1 cells, which correlated with the expressed levels of glutamate dehydrogenase. Glutamate-induced exocytosis was inhibited by the protonophores FCCP and SF6847, by the vacuolar-type H+-ATPase inhibitor bafilomycin A(1) and by the glutamate transport inhibitor Evans Blue. Our data provide evidence that exocytosis in beta-cells can be modulated by physiological increases in cellular glutamate levels. The results suggest that stimulation of exocytosis is associated with accumulation of glutamate in the secretory granules, a process that is dependent on the transgranular proton gradient.