APOE4 homozygosity has been associated with an increased risk of sporadic Alzheimer's disease through a mechanism, which has yet to be defined. Recent evidence has suggested that microvascular basement membrane injury may be a critical factor in the pathogenesis of AD-related dementia. In previous studies, we have shown that the synaptic organizing protein agrin can be found in neurons, and is a major component of the brain microvascular basement membrane. Here, we compare the basement membrane surface area of cortical microvasculature in AD brains by staining with an anti-agrin antibody. Quantitative morphometric analysis was used to determine the mean basement area (micro(2)) of prefrontal cortical microvessels. An average of 10 capillaries was measured in each of 35 cases of AD genotyped for APOE status. APOE4,4 homozygotes had smaller capillary basement membrane areas (17.4 micro(2))+/-6.2) than APOE3,3 homozygotes (26.9 micro(2)+/-6.5), p<0.001. The capillary basement membrane areas (CBMA) of heterozygotes APOE3,4 did not differ significantly from APOE3,3 or APOE4,4. Braak stage did not contribute significantly to CBMA. However, a preliminary analysis suggests an interaction between APOE4,4 and Braak V-VI producing smaller CBMA, a finding which needs to be confirmed with a larger sample. These data support the hypothesis that APOE4,4 is associated with thinning of the microvascular basement membrane in Alzheimer's disease.