Antisense oligodeoxynucleotide (AS ODN) probes directed against the alpha-subunit of different G-proteins have been used to differentiate feeding responses in rats elicited by different opioid agonists, including morphine, beta-endorphin and dynorphin. Furthermore, antisense probes directed against G(o)alpha, but not G(s)alpha, G(q)alpha or G(i)alpha, significantly reduced nocturnal feeding in rats. The present study examined whether food intake and weight changes elicited by 24 h of food deprivation were significantly altered by ventricular administration of antisense probes directed against either G(i)alpha(1), G(i)alpha(2), G(i)alpha(3), G(s)alpha, G(o)alpha, G(q)alpha or G(x/z)alpha as well as a control nonsense probe in rats. Deprivation-induced weight loss was significantly enhanced by antisense probes directed against G(s)alpha and G(x/z)alpha, whereas weight recovery 24 h following reintroduction of food was significantly reduced by antisense probes directed against G(i)alpha(2), G(q)alpha and G(o)alpha. Selective antisense probe effects were noted for deprivation-induced intake with G(s)alpha and G(q)alpha probes exerting the greatest reductions, G(x/z)alpha, G(i)alpha(2), and G(i)alpha(3) probes exerting lesser effects, and G(i)alpha(1) and G(o)alpha probes failing to affect deprivation-induced intake. Importantly, the nonsense control probe failed to alter deprivation-induced intake or weight. The reductions in deprivation-induced intake by AS ODN probes directed against G(s)alpha or G(q)alpha were not accompanied by any evidence of a conditioned taste aversion. These data indicate important distinctions between G-protein mediation of different effector signaling pathways mediating feeding responses elicited under natural (e.g. nocturnal feeding) and regulatory challenge (e.g. food deprivation) conditions.