Soluble beta-1,3-glucan has been demonstrated to protect against infection and shock in rats and mice, and clinical studies suggest that administration of soluble glucans to trauma/surgical patients decreases septic complications and improves survival. However, little is known about the precise mechanisms by which glucans influence the state of activation of blood cells, which are responsible for the fulminant cytokine production and the activation of the coagulation system observed in serious gram-negative infection. We studied therefore the effect of an underivatized, soluble yeast beta-1,3-glucan and lipopolysaccharide (LPS), either alone or in combination, on tumor necrosis factor-alpha (TNFalpha), interleukin-6 (IL-6), IL-8 and IL-10 secretion and monocyte tissue factor (TF) expression in human whole blood. As expected, LPS induced the secretion of substantial amounts of all measured parameters, whereas only minor amounts of TNFalpha, IL-6, and IL-10 were induced by beta-glucan itself. However, beta-glucan itself induced the production of significant amounts of IL-8 and TF. Soluble beta-1,3-glucan had a strong synergistic effect on the LPS-induced secretion of IL-8, IL-10, and on monocyte TF activity, but not on TNFalpha and 1L-6 production. On the other hand, soluble beta-glucan strongly primed LPS stimulation of all parameters, including TNFalpha and IL-6. beta-Glucan also induced detectable neutrophil degranulation within 15 min, whereas a response to LPS was first detected after 90 min. In conclusion, soluble beta-1,3-glucan upregulated leukocyte activity, both on its own and in concert with LPS.