The aldo-keto reductases (AKR) are a superfamily of enzymes with diverse functions in the reduction of aldehydes and ketones. AKR enzymes are found in a wide range of microorganisms, and many open reading frames encoding related putative enzymes have been identified through genome sequencing projects. Established microbial members of the superfamily include the xylose reductases, 2,5-diketo-D-gluconic acid reductases and beta-keto ester reductases. The AKR enzymes share a common (alpha/beta)(8) structure, and conserved catalytic mechanism, although there is considerable variation in the substrate-binding pocket. The physiological function of many of these enzymes is unknown, but a variety of methods including gene disruptions, heterologous expression systems and expression profiling are being employed to deduce the roles of these enzymes in cell metabolism. Several microbial AKR are already being exploited in biotransformation reactions and there is potential for other novel members of this important superfamily to be identified, studied and utilized in this way.