Previous studies suggest that therapeutic expression of interleukin (IL)-4 by islet cells improves their efficacy in transplantation models directed at reversing type 1 diabetes. We investigated the effects of introducing IL-4 into islets with recombinant adeno-associated virus (rAAV) on the reversal of hyperglycemia in a syngeneic marginal islet mass transplantation model. C57BL/6 islets were mock-transduced or transduced with rAAV expressing murine IL-4 (rAAV-IL-4) or rAAV expressing green fluorescent protein (rAAV-GFP) before transplantation of a marginal mass into diabetic mice. Normoglycemia was achieved in only 1/7 mice receiving rAAV-IL-4 transduced islets in comparison to 6/6 mock-transduced and 4/6 rAAV-GFP transduced animals. The failure of IL-4 expressing islets was not associated with cellular toxicity of rAAV or impairment of glucose-stimulated insulin release in vitro. Islet expression of IL-4 led to impaired metabolic function in mice receiving a marginal mass of syngeneic islets.