Although non-frozen storage of peripheral blood stem cells (PBSC) has been extensively studied and utilized clinically, the optimal storage conditions have not been determined. In order to improve the maintenance of clonogenic capacity during storage, we evaluated the feasibility of subzero non-freezing preservation of PBSC and attempted to determine the optimal conditions. Human PBSC were stored in different non-cryopreserved conditions. University of Wisconsin (UW) solution was used as the storage medium for PBSC. The stem cell integrity was optimally maintained when PBSC were preserved in a supercooled state at -2 degrees C in UW solution without any cryoprotectants, and the highest values for nucleated cell survival (91.6%), CFU-GM survival (67.3%) and trypan blue viability (92%) were achieved at 72 h. CFU-GM survival in our storage conditions was significantly better than the survival achieved with hypothermic preservation in autologous serum and ACD-A solution at 4 degrees C (67.3 +/- 9.2% vs 42.9 +/- 15.3%; P < 0.01) or cryopreservation at -80 degrees C (67.3 +/- 9.2% vs 52.7 +/- 10.7%; P < 0.01). Thus, the combination of supercooling and UW solution was the optimal non-freezing method of preserving transplantable PBSC tested here. This method is of clinical utility in peripheral blood stem cell transplantation (PBSCT) for its simplicity and storage efficiency, and has value as a short-term storage method for PBSC to support dose-intensive multicyclic chemotherapy.