We recently reported that the direct antitumor effectors in the liver induced by alpha-galactosylceramide (alpha-GalCer) are NK cells that are activated by the IFN-gamma produced from NK1.1 Ag(+) T cells (NKT cells) specifically stimulated with alpha-GalCer, whereas NKT cells cause hepatocyte injury through the Fas-Fas ligand pathway. In the present study, we investigated how mouse age affects the alpha-GalCer-induced effect using young (6-wk-old), middle-aged (30-wk-old), and old (75-wk-old) mice. The serum IFN-gamma and IL-4 concentrations as well as alanine aminotransferase levels after the alpha-GalCer injection increased in an age-dependent manner. An alpha-GalCer injection also induced an age-dependent increase in the Fas ligand expression on liver NKT cells. Under the stimulus of alpha-GalCer in vitro, the liver mononuclear cells from old and middle-aged mice showed vigorous proliferation, remarkable antitumor cytotoxicity, and enhanced production of both IFN-gamma and IL-4 in comparison to those of young mice, all of which were mediated mainly by NK1.1(+) cells. Furthermore, liver mononuclear cells from old mice stimulated with alpha-GalCer showed a more potent Fas-Fas ligand-mediated cytotoxicity against primary cultured hepatocytes than did those from young mice. Most alpha-GalCer-injected old mice, but no young mice, died, while anti-IFN-gamma Ab pretreatment completely inhibited mouse mortality. However, alpha-GalCer-induced hepatic injury did not improve at all by anti-IFN-gamma Ab treatment, and the Fas-ligand expression of liver NKT cells did not change. Taken together, the synthetic ligand-mediated function of NKT cells is age-dependently up-regulated, and the produced IFN-gamma is responsible for alpha-GalCer-induced antitumor immunity and the mouse mortality, while hepatic injury was unexpectedly found to be independent of IFN-gamma.