Responses in log transformed serum neuropeptide Y (NPY) concentration and leptin concentration after six generations of divergent selection on components of efficient lean growth in pigs were measured. From an animal breeding perspective, serum NPY and/or leptin concentrations could be used as physiological predictors of genetic merit if there were significant responses to selection. At 90 kg liveweight, log transformed serum NPY concentrations were increased with divergent selection for low food conversion ratio (LFC) (6.31 versus 5.72, SED 0.09 log(pmol/L)) or for high lean growth rate (LGA) (5.80 versus 5.37 log(pmol/L)) but not with selection on daily food intake (DFI) (6.26 versus 6.14 log(pmol/L)). Selection for high DFI was associated with increased serum leptin concentration (3.06 versus 2.45, SED 0.21 ng/mL human equivalent (HE)) as was selection for low LFC (3.04 versus 2.46 ng/mL HE). Correlations between leptin and predicted lipid weight increased with stage of test (0.13, 0.34 and 0.43, SE 0.08 at 30, 50 and 75 kg). The high correlations between successive serum NPY concentrations (0.80, SE 0.11) suggest that changes in body composition with time would not be reflected in serum NPY concentrations. Serum NPY and, to a lesser extent, serum leptin concentrations were insensitive to dietary differences in total lysine: energy and indicated that studies using a genetic resource population of animals may be more powerful than nutritional studies using isoenergetic diets differing in lysine content to examine aspects of function of serum concentrations of NPY and leptin in pigs.
Copyright 2002 Elsevier Science Inc.