Background: We studied the ability of CD4 and CD8 T cells to induce rejection of pancreas xenografts in a concordant combination using rat pancreas xenografts as donors and chemically induced diabetic mice as recipients.
Methods: Lewis rat (2 to 3 weeks old) pancreas xenografts were transplanted into streptozotocin (STZ)-induced diabetic mice. Lymphocyte proliferation and cytokine production were analyzed in vitro. All pancreas xenografts were assessed by functional (blood glucose) and histopathologic examinations.
Results: Lewis rat pancreas grafts were rejected within 10 to 13 days, with mononuclear cell infiltrate and tissue necrosis in STZ-induced diabetic mice. A predominant T cell receptor alphabeta -CD4 cell (on day 4) and T cell receptor alphabeta -CD8 cell (on day 8) infiltrate and IgM deposition were found in the pancreas xenografts after transplantation. Anti-CD4 (GK1.5), but not anti-CD8 (YTS169.4), monoclonal antibodies resulted in a prolonged survival of Lewis rat pancreas xenografts. Lewis pancreas xenografts were permanently accepted by CD4 knockout mice but not by CD8 knockout mice. The pancreas xenografts were acutely rejected with a mean survival time of 15.3 days in B cell-deficient mice (microMT/microMT). Transfer of CD4 but not CD8 spleen cells from naïve C57BL/6 mice into Rag2 mice led to acute rejection of transplanted pancreas xenografts. However, activated CD8 spleen cells elicited rejection of Lewis rat pancreas xenografts in SZT-induced diabetic mice.
Conclusion: The current results show that CD4 T cells are necessary and sufficient for mediating the rejection of Lewis rat pancreas xenografts in STZ-induced diabetic mice. However, CD8 cells, when activated, can also induce acute rejection of concordant pancreas xenografts.