High yield synthesis and reactivity of a phosphinidene bridged dimolybdenum complex

J Am Chem Soc. 2002 Dec 4;124(48):14304-5. doi: 10.1021/ja021072o.

Abstract

Protonation of [Mo2Cp2(mu-H)(mu-PHR*)(CO)4] (Cp = eta5-C5H5, R* = 2,4,6-C6H2tBu3) with HBF4.OEt2 gives the hydridophosphinidene complex [Mo2Cp2(mu-H)(mu-PR*)(CO)4]BF4, which is easily deprotonated with H2O to give the known phosphinidene complex [Mo2Cp2(mu-PR*)(CO)4] in 95% yield. Reaction of the latter with I2 gives the unsaturated phosphinidene complex [Mo2Cp2I2(mu-PR*)(CO)2], which exhibits an intermetallic distance of 2.960(2) A. Irradiation of solutions of [Mo2Cp2(mu-PR*)(CO)4] with UV light gives a mixture of the triply bonded [Mo2Cp2(mu-PR*)(mu-CO)2] and the hydridophosphido derivative [Mo2Cp2(mu-H){mu-P(CH2CMe2)C6H2tBu2}(CO)4] as major species. The latter complex results from an intramolecular C-H bond cleavage from a tBu group and has been characterized by spectroscopy and an X-ray study. Irradiation in the presence of HCC(p-tol) results in the insertion of the alkyne into the Mo-P bond to give [Mo2Cp2{mu-eta1:eta2,kappa-C(p-tol)CHPR*}(CO)4] structurally characterized through an X-ray study.