Effect of protein supplementation on development to the hatching and hatched blastocyst stages of cat IVF embryos

Reprod Fertil Dev. 2002;14(5-6):291-6. doi: 10.1071/rd01135.

Abstract

The effects of protein supplementation in culture medium on development to the hatching and hatched blastocyst stages of cat in vitro-fertilized embryos were investigated. In the first experiment, presumptive zygotes derived from in vitro maturation and in vitro fertilization (IVF) were cultured in modified Earle's balanced salt solution (MK-1) supplemented with 0.4% bovine serum albumin (BSA) or 5% fetal bovine serum (FBS) for 9 days. There were no significant differences between the BSA and FBS groups with respect to the proportion of cleavage and development to the morula and blastocyst stages of zygotes. However, the presence of FBS in the medium enhanced development to the hatching blastocyst stage of zygotes compared with the BSA group (31.4% v. 7.8%). Moreover, 2.9% of zygotes cultured with FBS developed to the hatched blastocyst stage. The mean cell number of blastocysts derived from zygotes cultured with FBS was significantly higher (P<0.01) than that from zygotes cultured with BSA (136.6 v.101.5). In the second experiment, embryos at the morula orblastocyst stage, which were produced by culturing in MK-1 supplemented with 0.4% BSA after IVF, were subsequently cultured in MK-1 with 0.4% BSA or 5% FBS. Significantly more morulae developed to the blastocyst (P<0.05) and hatching blastocyst stages (P<0.01) in the FBS group than in the BSA group (71.5% and 53.6% v. 44.9% and 6.0%, respectively). Although none of the morulae cultured with BSA developed to the hatched blastocyst stage, 11.5% of morulae cultured with FBS developed to the hatched blastocyst stage. Moreover, the proportion of development to the hatching blastocyst stage of blastocysts was significantly higher (P<0.01) in the FBS group than in the BSA group (68.7% v. 9.8%). None of the blastocysts cultured with BSA developed to the hatched blastocyst stage, whereas 7.3% of blastocysts cultured with FBS developed to the hatched blastocyst stage. The results of the present study indicate that supplementation with FBS at different stages of early embryo development promotes development to the hatching and hatched blastocyst stages of cat IVF embryos.

Publication types

  • Comparative Study

MeSH terms

  • Animals
  • Blastocyst / physiology*
  • Cats / embryology*
  • Cattle
  • Culture Media
  • Culture Techniques
  • Embryonic and Fetal Development*
  • Female
  • Fertilization in Vitro / veterinary*
  • Fetal Blood
  • Morula / physiology
  • Proteins / administration & dosage*
  • Serum Albumin, Bovine / administration & dosage
  • Zygote / physiology

Substances

  • Culture Media
  • Proteins
  • Serum Albumin, Bovine