The macrocycles L(1)-L(3) incorporating N(2)S(3)-, N(2)S(2)O-, and N(2)S(2)-donor sets, respectively, and containing the 1,10-phenanthroline unit interact in acetonitrile solution with heavy metal ions such as Pb(II), Cd(II), and Hg(II) to give 1:1 ML, 1:2 ML(2), and 2:1 M(2)L complex species, which specifically modulate the photochemical properties of the ligands. The stoichiometry of the complex species formed during spectrofluorometric titrations and their formation constants in MeCN at 25 degrees C were determined from fluorescence vs M(II)/L molar ratio data. The complexes [Pb(L(1))][ClO(4)](2).(1)/(2)H(2)O (1), [Pb(L(2))][ClO(4)](2).MeNO(2) (1a), [Pb(L(3))(2)][ClO(4)](2).2MeCN (1b), and [Cd(L(3))][NO(3)](2) (2b) were also characterized by X-ray diffraction studies. The conformation adopted by L(1)-L(3) in these species reveals the aliphatic portion of the rings folded over the plane containing the heteroaromatic moiety with the ligands trying to encapsulate the metal center within their cavity. In 1, 1a, and 2b the metal ion completes the coordination sphere by interacting with counteranion units and solvent molecules. On the contrary, the 1:2 complex 1b shows Pb(II) sandwiched between two symmetry-related molecules of L(3) reaching an overall [4N + 4S] eight-coordination.