M-LP (Mpv17-like protein) has been identified as a new protein that has high sequence homology with Mpv17 protein, a peroxisomal membrane protein involved in the development of early onset glomerulosclerosis. In this study, we verified the peroxisomal localization of M-LP by performing dual-color confocal analysis of COS-7 cells cotransfected with green fluorescent protein-tagged M-LP and DsRED2-PTS1, a red fluorescent peroxisomal marker. To characterize the peroxisomal membrane targeting signal, we examined the intracellular localizations of several green fluorescent protein-tagged deletion mutants and demonstrated that, of the three transmembrane segments predicted, the first near the NH(2) terminus and NH(2)-terminal half of the following loop region, which is abundant in positively charged amino acids, were necessary and sufficient for peroxisomal targeting. To elucidate the function of M-LP, we examined the activities of several enzymes involved in reactive oxygen species metabolism in COS-7 cells and found that transfection with M-LP increased the superoxide dismutase activity significantly. Quantitative real-time PCR analysis revealed that the manganese SOD (SOD2) mRNA level of COS-7 cells transfected with M-LP was elevated. These results indicate that M-LP participates in reactive oxygen species metabolism.