The complex pathophysiological mechanisms underlying perinatal hypoxia make it difficult to define early markers of severe hypoxia-ischemia encephalopathy. However, as progress in the development of neuroprotective therapeutic measures continues, the early identification of neonates at risk of severe hypoxic-ischemic encephalopathy is an important goal for appropriate decision making. Although the timing of perinatal hypoxic brain damage may vary and is sometimes unknown, high levels of non-protein-bound iron and high nucleated red blood cell counts in cord blood indicate an antepartum origin of neurological impairment, because they can occur only as a consequence of a pre-existing asphyxic event.
Conclusion: The combined assessment of nucleated red blood cells and non-protein-bound iron at birth seems extremely useful for the early identification of newborns at high risk of brain damage. Activin A also seems to be a reliable marker of perinatal hypoxia. Prospective long-term follow-up studies are needed to verify their predictive role.