Presenilin 1 (PS1) plays an essential role in intramembranous "gamma-secretase" processing of several type I membrane proteins, including the beta-amyloid precursor proteins (APP) and Notch1. In this report, we examine the activity of two familial Alzheimer's disease-linked PS1 variants on the production of secreted Abeta peptides and the effects of L-685,458, a potent gamma-secretase inhibitor, on inhibition of Abeta peptides from cells expressing these PS1 variants. We now report that PS1 variants enhance the production and secretion of both Abeta1-42 and Abeta1-40 peptides. More surprisingly, whereas the IC(50) for inhibition of Abeta1-40 peptide production from cells expressing wild-type PS1 is approximately 1.5 microm, cells expressing the PS1deltaE9 mutant PS1 exhibit an IC(50) of approximately 4 microm. Immunoprecipitation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry reveal that the levels of Abeta1-43 peptides are elevated in medium of PS1deltaE9 cells treated with higher concentrations of inhibitor. The differential effects of wild-type and mutant PS1 on gamma-secretase production of Abeta peptides and the disparity in sensitivity of these peptides to a potent gamma-secretase suggest that PS may be necessary, but not sufficient, to catalyze hydrolysis at the scissile bonds that generate the termini of Abeta1-40 and Abeta1-42 peptides.