Background & aims: Orexin-A and -B are brain-gut peptides that stimulate food intake via orexin-R1 and -R2 receptors. Cholecystokinin (CCK) inhibits food intake via CCK(A) receptors expressed on vagal afferent neurons. The purpose of the study was to determine whether vagal afferent neurons express OX-R1 and OX-R2 and whether orexin-A inhibits responses to CCK.
Methods: OX-R1 and -R2 expression by rat and human nodose ganglia was examined by reverse-transcriptase polymerase chain reaction (RT-PCR). Receptor localization was determined by immunohistochemistry. Responses of rat jejunal afferent fibers were examined by electrophysiology.
Results: Both rat and human nodose ganglia expressed OX-R1 as detected by RT-PCR, and humans also expressed OX-R2. The identity of the products was confirmed by sequencing. Immunohistochemistry indicated expression of OX-R1 in both species in neurons that also expressed CCK(A) and leptin receptors. In human ganglia there was also expression in glial cells that was absent in rats. Orexin-A had no effect on the resting discharge of afferent nerve fibers but inhibited responses to CCK.
Conclusions: OX-R1 and CCK(A) receptors are expressed by human and rat vagal afferent neurons. Orexin inhibits responses to CCK suggesting a role in modulation of gut to brain signaling.