The spectroscopic characteristics (absorption, emission, and fluorescence lifetime) of 13 commercially available red-absorbing fluorescent dyes were studied under a variety of conditions. The dyes included in this study are Alexa647, ATTO655, ATTO680, Bodipy630/650, Cy5, Cy5.5, DiD, DY-630, DY-635, DY-640, DY-650, DY-655, and EVOblue30. The thorough characterization of this class of dyes will facilitate selection of the appropriate red-absorbing fluorescent labels for applications in fluorescence assays. The influences of polarity, viscosity, and the addition of detergent (Tween20) on the spectroscopic properties were investigated, and fluorescence correlation spectroscopy (FCS) was utilized to assess the photophysical properties of the dyes under high excitation conditions. The dyes can be classified into groups based on the results presented. For example, while the fluorescence quantum yield of ATTO655, ATTO680, and EVOblue30 is primarily controlled by the polarity of the surrounding medium, more hydrophobic and structurally flexible dyes of the DY-family are strongly influenced by the viscosity of the medium and the addition of detergents. Covalent binding of the dyes to biotin and subsequent addition of streptavidin results in reversible fluorescence quenching or changes in the relaxation time of other photophysical processes of some dyes, most likely due to interactions with tryptophan residues in the streptavin binding site.