Aims: The physiological consequences of low external oxidoreduction potential in Leuconostoc mesenteroides were investigated.
Methods and results: Leuconostoc mesenteroides was grown under two initial oxidoreduction potential conditions (Eh7: +200 mV and -400 mV) using nitrogen and hydrogen as reducing agents. Growth was affected by Eh7; the lag phase increased from 1 h at an initial Eh7 of +200 mV to 6 h at an initial Eh7 of -400 mV; the maximum specific growth rate at -400 mV was 68% of the one observed at +200 mV. The NADH/NAD+ ratio and (NADH + NAD+) pool were independent of the external Eh7.
Conclusions: This study shows that changing the external oxidoreduction potential from +200 to -400 mV has a strong effect on the Leuc. mesenteroides physiology. The constancy of the maximum carbon and energetic fluxes (qglu, qATP) under the two Eh7 conditions accompanied by the decrease of YX/S and YATP suggested the existence of an uncoupling phenomenon, namely that some catabolized glucose and hence ATP was not associated with biomass production.
Significance and impact of the study: This paper demonstrates the usefulness of taking into account, the effect of the oxidoreduction potential on the growth of Leuc. mesenteroides in the fermentation process.