Selective amperometric detection of dopamine using OPPy-modified diamond microsensor system

Analyst. 2002 Dec;127(12):1572-5. doi: 10.1039/b208729d.

Abstract

Highly boron-doped diamond microfiber electrodes (BDDMF) were fabricated and characterized by the use of Scanning Electron Microscopy (SEM), Raman spectroscopy, and cyclic voltammetry. Amperometric detection of dopamine (DA), a neurotransmitter was achieved at pH 7.0, using BDDMF electrodes. The interferences from ascorbic acid (AA) and DOPAC were efficiently eliminated by using overoxidized polypyrrole-modified BDDMF electrodes, which also increased the sensitivity for the detection of dopamine. The limit of detection (S/N = 3) for dopamine was 0.1 nM, which is one order lower than that observed for carbon microfiber electrodes (CMFE), and the linear dynamic range was obtained from 0.5 nM to 100 microM (r2 = 0.997). The amperometric response for 0.5 nM dopamine has shown high stability with an RSD of 5.4% (n = 5). Highly reproducible results were obtained with an RSD of 6.2% for 10 measurements of 1 nM DA taken during 10 h and also remained the same, during measurements for 7 days, with no variation in efficiency for rejection of AA and DOPAC.

MeSH terms

  • Cardiotonic Agents / analysis*
  • Diamond
  • Dopamine / analysis*
  • Electrochemistry / methods
  • Microelectrodes
  • Sensitivity and Specificity

Substances

  • Cardiotonic Agents
  • Diamond
  • Dopamine