NY-ESO-1, a germ cell Ag often detected in tumor tissues, frequently elicits Ab and CD8(+) T cell responses in cancer patients. Overlapping long peptides spanning the NY-ESO-1 sequence have been used to map HLA class I-restricted epitopes recognized by NY-ESO-1-specific CD8(+) T lymphocytes. To address the antigenicity of long peptides, we analyzed two synthetic 30-mer peptides from NY-ESO-1, polypeptides 80-109 and 145-174, for their capacity to be processed by APCs and to stimulate CD8(+) T cells. By incubating APCs with polypeptides at different temperatures or in the presence of protease inhibitors, we found that NY-ESO-1 polypeptides were rapidly internalized by B cells, T2 cells, or PBLs and submitted to cellular proteolytic action to yield nonamer epitopes presented by HLA class I. Polypeptides were also immunogenic in vitro and stimulated the expansion of CD8(+) T cells against naturally processed NY-ESO-1 epitopes in the context of three different HLA class I alleles. Polypeptides can thus serve as exogenous Ags that are cross-presented on HLA class I without requiring the action of professional APCs. These findings support innovative vaccination strategies using NY-ESO-1 polypeptides that would circumvent current limitations of HLA class I peptide vaccination, i.e., HLA eligibility criteria and knowledge of epitope, while allowing for facilitated immunogenicity in the presence of helper epitopes.