Pre-clinical evaluation of an inverse planning module for segmental MLC based IMRT delivery

Phys Med Biol. 2002 Dec 21;47(24):N303-14. doi: 10.1088/0031-9155/47/24/401.

Abstract

Phantom tests are performed for pre-clinical evaluation of a commercial inverse planning system (HELAX TMS, V 6.0) for segmented multileaf collimator (MLC) intensity modulated radiotherapy (IMRT) delivery. The optimization module has available two optimization algorithms: the target primary feasibility and the weighted feasibility algorithm, only the latter allows the user to specify weights for structures. In the first series, single beam tests are performed to evaluate the outcome of inverse planning in terms of plausibility for the following situations: oblique incidence, presence of inhomogeneities, multiple targets at different depths and multiple targets with different desired doses. Additionally, for these tests a manual plan is made for comparison. In the absence of organs at risk, both the optimization algorithms are found to assign the highest priority to low dose constraints for targets. In the second series, tests resembling clinical relevant configurations (simultaneous boost and concave target with critical organ) are performed with multiple beam arrangements in order to determine the impact of the system's configuration on inverse planning. It is found that the definition of certain segment number and segment size limitations does not largely compromise treatment plans when using multiple beams. On the other hand, these limitations are important for delivery efficiency and dosimetry. For the number of iterations and voxels per volume of interest, standard values in the system's configuration are considered to be sufficient. Additionally, it is demonstrated that precautions must be taken to precisely define treatment goals when using computerized treatment optimization. Similar phantom tests could be used for a direct dosimetric verification of all steps from inverse treatment planning to IMRT delivery.

Publication types

  • Evaluation Study
  • Validation Study

MeSH terms

  • Algorithms
  • Humans
  • Phantoms, Imaging*
  • Quality Control
  • Radiometry / methods*
  • Radiotherapy Dosage
  • Radiotherapy Planning, Computer-Assisted / methods*
  • Radiotherapy, Conformal / instrumentation
  • Radiotherapy, Conformal / methods*
  • Reproducibility of Results
  • Sensitivity and Specificity