Objective: In coronary MR angiography, data are conventionally accepted in only short and fixed periods of the cardiac and respiratory cycles. We hypothesized that a more flexible and subject-specific approach to cardiac and respiratory gating may shorten scanning times while maintaining image quality.
Subjects and methods: We implemented an acquisition technique that uses subject-specific acquisition windows in the cardiac cycle and a motion-adapted gating window for respiratory navigator gating. Cardiac acquisition windows and trigger delays were determined individually from a coronary motion scan. Motion-adapted gating used a 2-mm acceptance window for the central 35% of k-space and a 6-mm window for the outer 65% of k-space. In 10 subjects, three-dimensional coronary MR angiograms of the right and left coronary systems were acquired with this technique (the "adaptive technique") as well as a conventional acquisition method, and the scanning times and image quality were compared. The adaptive technique was then applied prospectively to 40 patients who underwent coronary radiographic angiography.
Results: Scanning times with the adaptive technique were reduced by a factor of 2.3 for the right coronary artery and by a factor of 2.2 for the left coronary artery system compared with the conventional technique, mainly because we were able to use longer subject-specific acquisition windows in patients with low heart rates. Subjective and objective measurements of image quality showed no significant differences between the two techniques. Prospective evaluation of MR angiograms yielded a sensitivity and specificity of 74.3% and 88.2%, respectively, to detect significant coronary artery stenoses.
Conclusion: Coronary MR angiography with subject-specific acquisition windows and motion-adapted respiratory gating reduces scanning times while maintaining image quality and provides high diagnostic accuracy for the detection of coronary artery stenosis.