Biochemical characterization of the acquired metallo-beta-lactamase SPM-1 from Pseudomonas aeruginosa

Antimicrob Agents Chemother. 2003 Feb;47(2):582-7. doi: 10.1128/AAC.47.2.582-587.2003.

Abstract

SPM-1 is a new metallo-beta-lactamase recently identified in Pseudomonas aeruginosa strain 48-1997A, isolated in Sao Paulo, Brazil. Kinetic analysis demonstrated that SPM-1 has a broad hydrolytic profile across a wide range of beta-lactam antibiotics. Considerable variation was observed within the penicillin, cephalosporin, and carbapenem subfamilies; however, on the whole, SPM-1 appears to preferentially hydrolyze cephalosporins. The highest k(cat/)K(m) ratios (in micromolar per second) overall were observed for this subgroup. The hydrolytic profile of SPM-1 bears the most similarity to that of the metallo-beta-lactamase IMP-1, yet for the most part, SPM-1 has k(cat)/K(m) values higher than those of IMP-1. Zinc chelator studies established that progressive inhibition of SPM-1 by EDTA, dipicolinic acid, and 1-10-o-phenanthroline demonstrated a biexponential pattern in which none of the chelators completely inhibited SPM-1. A homology model of SPM-1 was developed on the basis of the IMP-1 crystal structure, which showed the protein folding and active-site structure characteristic of metallo-beta-lactamases and which provides an explanation for the kinetic profiles observed.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Anti-Bacterial Agents / pharmacology*
  • Pseudomonas aeruginosa
  • beta-Lactamases / genetics
  • beta-Lactamases / isolation & purification*
  • beta-Lactamases / pharmacology
  • beta-Lactams

Substances

  • Anti-Bacterial Agents
  • beta-Lactams
  • beta-lactamase IMP-1
  • beta-lactamase SPM-1, Pseudomonas aeruginosa
  • beta-Lactamases