Both the protein kinase C (alpha/beta) inhibitor Go6976 and expression of dominant-negative nuclear factor (NF)-kappaB inhibitor kinase mutants: (a) blocked the growth and caused regression of a mammary tumor insyngeneic mice; (b) inhibited epidermal growth factor (EGF)-induced activation, nuclear translocation, and DNA-binding activity of NF-kappaB; and (c) caused apoptosis of EGF-stimulated cultured mammary tumor cells. cDNA microarray analysis revealed that these treatments reversed the expression changes of a subset of genes altered by EGF treatment. These included: up-regulation of proapoptotic genes of the tumor necrosis factor (TNF) pathway, death-associated protein (DAP) kinase, p53, and p21/Waf1; and down-regulation of inhibitors of apoptosis: inhibitor of apoptosis(IAP)-1 and X-IAP, TNF receptor-associated factor (TRAF)-2, and factors OX40 and 4-1BB. These results and our previous studies suggest the practicality of a target-directed chemotherapy for EGF-responsive breast cancers, by blocking NF-kappaB activation and thereby reinstating apoptosis.