Refinement of protein structures in explicit solvent

Proteins. 2003 Feb 15;50(3):496-506. doi: 10.1002/prot.10299.

Abstract

We present a CPU efficient protocol for refinement of protein structures in a thin layer of explicit solvent and energy parameters with completely revised dihedral angle terms. Our approach is suitable for protein structures determined by theoretical (e.g., homology modeling or threading) or experimental methods (e.g., NMR). In contrast to other recently proposed refinement protocols, we put a strong emphasis on consistency with widely accepted covalent parameters and computational efficiency. We illustrate the method for NMR structure calculations of three proteins: interleukin-4, ubiquitin, and crambin. We show a comparison of their structure ensembles before and after refinement in water with and without a force field energy term for the dihedral angles; crambin was also refined in DMSO. Our results demonstrate the significant improvement of structure quality by a short refinement in a thin layer of solvent. Further, they show that a dihedral angle energy term in the force field is beneficial for structure calculation and refinement. We discuss the optimal weight for the energy constant for the backbone angle omega and include an extensive discussion of meaning and relevance of the calculated validation criteria, in particular root mean square Z scores for covalent parameters such as bond lengths.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Validation Study

MeSH terms

  • Dimethyl Sulfoxide / chemistry
  • Interleukin-4 / chemistry
  • Models, Molecular*
  • Molecular Structure
  • Nuclear Magnetic Resonance, Biomolecular
  • Plant Proteins / chemistry
  • Proteins / chemistry*
  • Solvents / chemistry*
  • Ubiquitin / chemistry
  • Water / chemistry*

Substances

  • Plant Proteins
  • Proteins
  • Solvents
  • Ubiquitin
  • Water
  • Interleukin-4
  • crambin protein, Crambe abyssinica
  • Dimethyl Sulfoxide