The neuropeptide TIP39 was recently purified from bovine hypothalamus based on the ability of the peptide to activate the parathyroid hormone 2 receptor (PTH2R) ( Nat. Neurosci. 2 (1999) 941). PTH2R is abundantly expressed in the nervous system, and its expression pattern suggests that it may play a role in modulation of pituitary function and in nociception. Towards understanding the physiological role of TIP39 and PTH2R, we cloned human, mouse and rat TIP39 gene. Our results revealed that: (1) the mature peptide is processed from a precursor; (2) TIP39 peptide is highly conserved among species; and (3) TIP39 from all species activates adenylyl cyclase and elevates intracellular calcium levels through PTH2R. We also defined and compared the structure-activity relationship of TIP39 on both activation of adenylyl cyclase and calcium mobilization pathways through PTH2R, finding common and differential determinants of TIP39 that are required for these pathways. Furthermore, we observed that TIP39 elevates intracellular calcium levels in primary dorsal root ganglion neurons whereas the peptide inactive on PTH2R do not, suggesting that TIP39 may activate these neurons important for nociception in vivo through PTH2R-dependent mechanisms.