We present measurements of the thermal resistivity rho(t,P,L) near the superfluid transition of 4He at saturated vapor pressure and confined in cylindrical geometries with radii L=0.5 and 1.0 microm [t identical with T/T(lambda)(P)-1]. For L=1.0 microm measurements at six pressures P are presented. At and above T(lambda) the data are consistent with a universal scaling function F(X)=(L/xi(0))(x/nu)(rho/rho(0)), X=(L/xi(0))(1/nu)t valid for all P (rho(0) and x are the pressure-dependent amplitude and effective exponent of the bulk resistivity rho, and xi=xi(0)t(-nu) is the correlation length). Indications of breakdown of scaling and universality are observed below T(lambda).