Objective: The C-terminal peptide of amino acids 83-119 of the SmD1 protein is a target of the autoimmune response in human and murine lupus. This study was undertaken to test the hypothesis that SmD1(83-119)-reactive T cells play a crucial role in the generation of pathogenic anti-double-stranded DNA (anti-dsDNA) antibodies.
Methods: Splenic or lymph node T cells derived from unmanipulated as well as SmD1(83-119)-immunized NZB/NZW mice were analyzed in vitro by enzyme-linked immunospot (ELISpot) assay to determine T cell help for anti-dsDNA generation induced by the SmD1(83-119) peptide. Cytokines expressed by these T cells were measured by ELISpot assay, enzyme-linked immunosorbent assay, and flow cytometry. SmD1(83-119)- and ovalbumin-specific T cell lines were generated and characterized.
Results: The SmD1(83-119) peptide, but not the control peptides, significantly increased the in vitro generation of anti-dsDNA antibodies in cultures from unmanipulated NZB/NZW mice. Interferon-gamma (IFNgamma), interleukin-2 (IL-2), IL-4, transforming growth factor beta, and IL-10 production increased in response to the peptide in young mice; only IFNgamma and IL-2 were increased in older, diseased mice. Activation of SmD1(83-119)-reactive T cells by immunization of NZB/NZW mice resulted in elevated anti-dsDNA synthesis and, later, increased antibodies to SmD1(83-119). Most cells in SmD1(83-119)-specific CD4+ T cell lines helping both antibodies had increased intracellular expression of IFNgamma, and most expressed both IFNgamma and IL-4.
Conclusion: The SmD1(83-119) peptide plays an important role in generating T cell help for autoantibodies, including anti-dsDNA, and activates different subsets of T cells as defined by distinct cytokine expression. This peptide is an interesting target structure for the modulation of autoreactive T cells, and its characterization may contribute to our understanding of the role of autoantigen-reactive T cells in the pathogenesis of SLE.