Several quantitative trait loci (QTL) for important reproductive traits (age of puberty, ovulation rate, nipple number and plasma FSH) have been identified on the long arm of porcine chromosome 10. Bi-directional chromosome painting has shown that this region is homologous to human chromosome 10p. Because few microsatellite or type I markers have been placed on SSC10, we wanted to increase the density of known ESTs mapped in this region of the porcine genome. Genes were chosen for their position on human chromosome 10, sequence availability from the TIGR pig gene indices, and their potential as a candidate gene. The PCR primers were designed to amplify across introns or 3'-UTR to maximize single nucleotide polymorphism (SNP) discovery. Parents of the mapping population (one sire and seven dams) were amplified and sequenced to find informative markers. The SNPs were genotyped using primer extension and mass spectrometry. These amplification products were also used to probe a BAC library (RPCI-44, Roswell Park Cancer Institute) for positive clones and screened for microsatellites. Six genes from human chromosome 10p (AKR1C2, PRKCQ, ITIH2, ATP5C1, PIP5K2A and GAD2) were mapped in the MARC swine mapping population. Gene order was conserved within these markers from centromere to telomere of porcine chromosome 10q, as compared with human chromosome 10p. Four of these genes (PIP5K2A, ITIH2, GAD2 and AKR1C2), which map under QTL, are potential candidate genes. Identification of porcine homologues near important QTL and development of a comparative map for this chromosome will allow further fine- mapping and positional cloning of candidate genes affecting reproductive traits.